
pN STOCHASTIC CONVERGENCE OF THE
' SAMPLE EXTREME VALUES FROM

DISTRIBUTIONS WITH INFINITE

EXTREMITIES

By P. k. Sen

University of Calcutta, India

1. Introduction

Let Xi, ..., be a randpm sample of n units drawn from a popula
tion with a continuous cumulative distribution function {cdf) F (x).
For distributions, having infinite extremities, Fisher and Tippett
(1928) considered the asymptotic distribution of X(i) and JV(„), the;,sample
smallest and the largest observations. Later, these findings were
extended to the general case of Xf,) and A® '-th smallest.and
the r-th largest observations, for any given r, by Gumbel (1935).. Two
broad families of cdf were considered by them and termed the expo
nential and the Cauchy type of distributions, and the underlying
regularity conditions were explicitly formulated by Von Mises (1936).
The asymptotic distribution of the sample extreme value possesses a
unique mode-termed the characteristic extreme value by Gumbel
(1958).

. . " . ' ,i

Here we have considered the stochastic convergence of the sample
extreme values to the corresponding characteristic extreme values, and
the property is termed the consistency of the sample extreme; values.
This concept has been found to be very useful in establishing the con
sistency (or the inconsistency) of a class of multisample non-parametric
tests by Hosteller (1948), Rosenbaum (1953),- Kamat (1956), Haga
(1960), among others and a detailed discussion of these has been made
by the author, elsewhere (1961). Now the limiting distribiition. of
x^,) or .X(„_r+,) cannot by itself guarantee the consistency'of it. In
the particular case of x,i) (actually of Mi = ^ {X(i) 4- a:(„)}), Kendall
and Stuart (1958, pp.341) considered this property. They, however,

. have only considered two. particular cdf's, namely, the normal'and the
double exponential one, and have sliown that, in the first case M-^
converges in probability to its population value,, while in the second
case, it does not. Also, their proof is based on the convergence (to
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zero) of the variance of M^, which they have calculated using the
limiting distribution of Mj. Now, it may be remarked that as for
the consistency of a statistic, one need not bother about its variance,
provided its sampling distribution is fairly specified—as is the case
here. Secondly, the asymptotic value of the actual variance, may not
necessarily, be equal to the variance of its limiting distribution, parti
cularly, if the convergence is not -in moments—a case which is also
true for a subclass of exponential type of distributions, termed, the
concave type (explained later on). , So, here is established a general
theorem on the consistency of the sample extreme values, avoiding
these drawbacks and it has been, shown that for the entire family of
distributions of the Cauchy type, the sample extreme values as well
as the extreme mid-ranges, are not consistent and even for the expo
nential type of distributions, they will be consistent, only under further
extra-regularity conditions. Kendall and Stuart (1958, pp. 336) raised
a further question as to the moments of the extreme values: whether
the convergence of the moments of the sample extreme values to the,
corresponding ones of their asymptotic distribution follows along
with the convergence of their distribution. Here, we have established
this for a class of exponential type of distributions.

2. Notations and Preliminaries

For distributions of the exponential or the Cauchy type, the
cdfF{x) together with its first two derivatives /{x) and is con
tinuous everywhere, and

lim [1 - F(;c)] = 0, lim {f{x) = F' (x)} = 0

and

and

lim/'(x) = 0; lim P(x) = 0, lim f(x) = 0.

lim /'(a:)-0.
a-s—oo

Further, for large | * |, we have

fix) ^ —/'(ff) for positive- a;
l-/'(x) • fix)

fix) fix) .
%) - Ax) "

(2.1)

(2.2)
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and thus they satisfy L' Hospital's rule. Let us also write

^ (J
dx .

- , . [1 —F(a:)] . ^ . N d^iix) (
/w = J

Then the two families of cdf may be defined as follows.

(i) Exponential type of cdf.—Here Q (x) converges to zero as
— oo and Cj(x) converges to zero as x oo. It is further known

that such a distribution possesses moments of all orders (c/. Gumbel,
1958, pp. 149).

(ii) Cauchy type oj cdf.—In this case, we have

lim Cj(x) = —̂ where k2> Oj
• "'OO ^2 /

and ^ (2.4)
lim Ci (x) = —r where /q > 0 \

it—oo «1 J

Distributions of this class possess no moment of order: min. (A;i, ki)
or more (c/. Kendall and Stuart, 1958, pp.333). Such distributions
have also been considered by Frechet (1927).

Let us also define the characteristic ./--th largest value x„., by
F(x„_r) = {n —r)ln and the characteristic /--th smallest value „.,x
by F(„_rx) = rin for r = 1, 2, ... With these we will pass on to the
study of the properties of the sample extremes,

3. Exponential Type of Distributions

We have from the definition of cPg (•^), made in the preceding section,

^ . ._[l-i^(x)] • rflog(l-i^(x)i - 1, ,.e.,

Therefore, we get on integration

1- ir(jc) = (3.1)

where

#2(^) _ 1
dx <1>2 (x)

(2.3)
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and ^2(00) = 00, 00) = 0. We now divide the class of exponen
tial type of distributions into three bread categories:

(a) Convex exponential type.—Jn this case, in addition to lim Cj (x
' —: •

= 0, we have lim ^2 W = 0 and a similar case follows with f^iCx)
gmOO

and CiW, if the range extends to — 00, on the left.

If, further, there exists a value of ;X, say x^, such that for all x^ Xj,
is a monotonically decreasing function of x, then F(x) will be

termed a strictly convex exponential type. This additional restriction
will only be required for the convergence of moments of the extreme
values.

{b) Simple exponential type.—Here lim 02 W = > 0 and a
00

similar case with the lower extremity.

(c) Concave exponeniial type.—Here lim W = 00. though it
ar-«oo

does so satisfying lim Cj(x) = 0. A similar case follows with the

lower extremity.

Then we have the following:

Theorem 3.1. For exponential type of distributions, the r-th
largest (smallest) observation in a smaple of size «, converges in pro
bability to the corresponding characteristic /-th largest (smallest) value,
only for the convex type.

Proof.—In the neighbourbhood of x„,r, the asymptotic distribution
of Z = is given by (c/. Gumbel, 1935)

g{u) du = epx. {—ru—re""} du ^

where > (3.2)

1/= "/(x„.,) [Z - X„.r]

Also, by definition of we have

"/(x„..)«[02(^„,)r^ (3-3)

Now, as F(x„_r) ~ {n — /•)/« and as the range is extended to 00, we
have from the monotonicity of F(x) that lim .v„.r = 00. Thus, it

follows from (3.3) that
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lim -/(x„ r) = oo, ifF(x) is a convex exponential j
type of cdf (

<4- ' for non-convex exponential type^d. of cdf, where d2 < 00.

Let us first consider the convex exponential type of cdf and con
sider any sequence of functions {C„ = H(x„,)}, such that

lim = 0, but lim ^ ixn.r) = b,)
L<P,

= 00, (3.5)

this being always possible as lim (p2(x„.,) = 0. We have then for
n—CO

large n,

Prob. {x,,., - 6„ < Z< x„_, + 6„} = iXre"") - (re-""), (3.6)

where

X

If {x) =I=̂ e-' dx.
0

Now, as lim b„ —00, we get from the well-known properties of
n-oo

the incomplete Gamma functions that

lim /,(/•£-'")= lim {I - Irire"")} = 0. (3.7)
«c=co n—oo

Hence, from (3.6) and (3.7), we get

lim Prob. {[ X(„_r+i) — e,.} =^1-
JJ=00

Thus, converges in probability to x,„..

For non-convex exponential cdf's, we note that whatever be the
sequence {e„} of arbitrarily small positive quantitiej with lim €„

. ««=-oo

= 0, we would have [as follows from (3.4)];

lim
fji-oo

and hence from (3.6), we get after simple manipulations, [using (3.6)],

lim Prob. {| —x„rl < e„} = 0.
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Thus cannot converge in probability to x„,,. A similar result
applies to the lower extreme values.

Hence, the theorem.

Cramer (1946, pp. 376), following the lines of Fisher and Tippett
(1928) and Gumbel (1935), has suggested that the asymptotic distri
bution in (3.2) also holds for the class of cdf's, for which, we have,
for large | x |, at least

f{x) = A exp. {— B \ X I"} where A, B, p> 0._

It now follows from our Theorem 3.1 that only for p > 1, the sample
extreme values will be consistent in the above sense, while for p~^ 1,
they will not be so. Also, of the two examples considered by Kendall
and Stuart (1958, pp. 341), the normal cdf belongs to the family of
convex exponential type, while the double exponential belongs to the
family of simple exponential type; hence, in the first case, the extreme
values (and consequently the mid-ranges) converges, while in the later
one, they do not.

As the entire class of exponential type of cdf's possesses moments
of all finite orders (c/. Gumbel, 1958, pp. 149), it follows from a theorem
on the existence of the moments of order statistics (Sen, 1959, Theorem
2.1) that the same is also true for the distributions of the extreme values.
In most of the cases, these moments cannot be evaluated by direct
integration and as the labour involved in the quadrature procedure
increases tremendously with the sample size, one is naturally inclined
to use some simple and valid approximations, at least for the large
samples. And, here is. considered the problem of the convergence of
the moments of the extreme values to the corresponding ones of their
limiting distribution, as sketched in (3.2). Here is established this
for both convex and simple exponential types, while for concave type,-
we have not been able to do this, nor we think it to be easily
approachable.

Theorem 3.2. For strictly convex exponential type of distri
butions, the /c-th moment'of the r-th extreme value (in a sample of
size n) about its characteristic extreme value, converges asymptotically
to the corresponding one, derived from its limiting distribution, given
in (3.2).

Proof.—We are to show that

lim
n

;/U,.r)] [X(„,,41) -
k.

(3.9)
n—CO
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where iJ,k° is the ^-th moment (about the origin) of u [defined in (3.2)]
and the expression for is available with Kendall and Stuart (1958,
pp.336).

Let us now denote by g(Z), the density function of Z = ^(„_r+i).
Then

(̂Z) dZ =r(") [F(Z)]"- [1 - F(Z)y-^ dF(Z).
Let us also define and X2(„) by

~ and X2(„) =,X„,r + (3.10)

where has already been defined in the proof of Theorem 3.1. Then
we can write

E(Z- x,,,)" =
A:2(n) CO

J + J + J
^ .*1(11) *2(n)"'

(Z-x,J''g(Z)dZ

= /i + /2 + 73(say). - (3.11)

Since x„,r is an increasing function of n with lim x„,^ = oo, there
CO

exists a value of n, say such that for all n > n^, x„,, ^ where
for jx: ^ Xi, (x) is a convex function of x. Taking then n adequately
large, we have after some simple computations

OO

I='•(") J {Z-x,J'g{Z)dZ
•*2(11)

<1,. J y^er'" (^1 —̂ dy.
^2te(n))-l0g«/f

(3.12)

Thus, it can be shown with simple algebraic manipulations that

lim
nwoo L

= lim [®2 (Xn.r)]'-" I Is

OO

lim = 1 y'̂ dy = 0.
n-oo r J

[where has been defined in (3,5)].

(3.13)
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Again

Then

-"^Kn)
/j= J g{Z)dZ

; +;
I—oo J

(Z- x„,,yg(Z)dZ

= hi + In (say).

(3.14)

where 0 <J7j = f (xj) < 1, C;^ = 2"^^ fox k> 1 and = 1 for A: < 1;
Vfc is the absolute /c-th moment of the density function f(x). Also,
it follows from the convexity of i/ra (x) for x ^ x^, that

x„.r — < ^2 (Xi) [^Aa (x„.r) —"Aa (^l)]>

i.e..

*„.r< a+ blog'- (3.15)

where a and b are finite for any n. Thus, in view of the following
lim n'+'' (leg n)' p" = 0 for any 0 < < 1 and given k, r, we get from

(3.14) and (3.15) that

lim ~/(^n.r) = 0. (3.16)

It can similarly be shown with lengthy algebraic computations
(the details of which are available with the author, 1961) that

V/C^n-r) . Mi2

\ n*-r<^ [^2 (^„.r)r' J 1- . evJ dy (3.17)

(where c is a finite positive quantity) and hence after some manipula
tions we get that

lim
neeOO

/i2 I = 0 for any given k. (3.18)
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-From (3.13), (3.16) and (3.18) we get, at once,

lim j-/(x„,)T^(2-0'}
limOO , W J

'W,

lim jr"/(;c„,)"
»-oo I L

, (3.19)

'• W^aillO ;

. J

(3.20)

Also for all Xk,., = A:„.r —e„ < —Jf2(n). we have

and further, it can be shown with little difficulty, thatfor all such x,

= 1 + 8„ (3.21)

where S„->0 as n^oo. Hence, (3.20) reduces, after some simpli
fication, to

b„J* dy +Vn (3.22)
-bn : .

where •>?„-> 0 as n-^oo. Now as b„^oo with n^oo, we get from
the convergence of the integral in (3.22) at i oo, that

lim

Hence, from (3.19) and (3.23), we get that

lim ^^-^yC^n.r) [X(n-'r-t'l) ^n.r}^
A similar case follows with :c(r). Hence, the theorem.

•Theorem 3.3. For simple exponential type of distributions, the
roonicnts of the sample extreme v^luesj about their characteristic

(3.23)
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extreme values, converges to the corresponding ones of their limiting
distribution.

The proof is simple. It can be shown that for such distributions,
we have for all large n and for all finite Z = n[l —J(x)],

(3.24)

p

where 0. With this we can proceed similarly as in the preced
ing theorem and arrive at the desired result.

It thus follows from those two theorems that for such exponential
type of distributions, we can use the limiting distribution of the sample
extreme values, for large samples at least, for evaluating their central
moments.

4. Cauchy Type of Distributions

Let us first consider the distribution of or for large
samples and for that, we apply the same technique, as applied by
Gumbel (1935) for the case of exponential distributions. The dis
tribution of Z is given by (where Z = X(„_,+i,)

g{Z)dZ = [(i^(Z)]"- [1 - F(.Z)]-^f{Z)dZ. (4.1)

We now expand FiZ) locally about F(x„J = (n - r)lTi and get

FiZ) - Fix.,,) + (Z~ )/(,„.,) + (;c„J+...

(4.2)

Now from the condition lim (x) = —Ijkz, we get

= and

(iii) /' ^
^ n.r

With these, we get from (4.1) and (4.2), after some simple adjust
ments, that in the neighbourhood of the large sample distribution
of .Z cprnes gut a§ . ,
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r' ( Z f / Z kdz .

and in the particular case of r — 1, this tallys with the expression given
by Fisher and Tippet (1928). We have then the following:

Theorem 4.1.—For the entire class of Cauchy type of distribu
tions, the sample extreme values do not converge in probability to
their characteristic extreme ones.

I

Proof.—Let us consider the case of Z = x Then, for any
given sequence {e„} of arbitrarily small positive quantities, with
lim = 0, we have from (4.1) and (4.3)

n-oo

b"

Prob. {|Z- 1< •<,} 4= =J e-" y'-^ dy
a„

where '

= r{1 +-^ and = . j1- ^ . (4.4)

Now as, : '

lim a„ = lim ft,. == r, we get from (4.4) that
n«09 n-co

lim Erob. {| Z — ««} = 0- (4.5)
fl—OO

The case with X(r) follows similiarly.

Hence, the theorem.

In view of the inconsistency of the sample extreme values, little
has to be done with them, as regards their applications in the theory
of inference. Further, it can be shown that for such distributions,
moments of the sample extreme values, higher than a certain order,
do not exist (c/. Sen, 1961). So, for such distributions, the problem
of the convergence of the moments (only which actually exist) has not
been considered. , |

We have so far considered the case of sample extreme values.
The case with, the extreme mid-ranges and ranges, their consistency
(in the same sense) and asymptotic convergence of moments will follow
precisely on the same line and hence need not be reproduced here,



200. JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

5. Summary

In this paper, the stochastic convergence of the sample extreme
values to the corresponding characteristic extreme values, as well as
the asymptotic convergence of their central moments to the corres
ponding ones of their limiting distributions, have been studied, for
parent distributions of the exponential or the Cauchy type. These
findings appear to be very useful in studying the consistency and the
asymptotic power-efficiency of a class of multi-sample rion-parametric
tests, based on the number of rare exceedances.
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